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Abstract

We study the role of potential energy using the mechanical en-

ergy framework for vertical natural convection (VC), which

is a buoyancy driven flow between differentially heated verti-

cal walls. The Rayleigh numbers range from 105 to 109 and

the Prandtl number is set at 0.709. Guided by the framework

for VC, we compare the rate of conversion from potential en-

ergy to kinetic energy with that for Rayleigh–Bénard convec-

tion (RBC). The rate of conversion driven by vertical buoyancy

flux are comparable for both VC and RBC at matched Rayleigh

numbers. However, the turbulent production rate as well as

turbulent dissipation rate are higher for VC than for RBC at

matched Rayleigh numbers, which suggest that small-scale tur-

bulence is generated at much lower Rayleigh numbers in VC

compared to RBC. In addition, the dissipation rate of kinetic

energy in VC is directly proportional to the rate at which po-

tential energy is available for conversion. This relationship is

consistent with the values of mixing efficiency for VC (propor-

tion of kinetic energy consumed by irreversible mixing), which

is approximately 0.53 for the present Rayleigh number range.

This value of mixing efficiency in VC is also close to the ex-

pected value of mixing efficiency in RBC, which is 0.5.
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Figure 1: Setup of VC. u is the mean streamwise velocity, ρ
is the mean density, ρ0 is the reference density and ∆ρ is the

density difference at the hot and cold walls. Gravity g acts in

the −x-direction.

We investigate the role of available potential energy and irre-

versible mixing in vertical natural convection (VC), see figure 1,

which is a buoyancy driven flow between differentially heated

vertical walls [7]. We consider the mechanical energy frame-

work as proposed by Winters et al. [10], which distinguishes

between the potential energy that is available for conversion

into kinetic energy and the potential energy that is unavailable

for conversion into kinetic energy, the former called the avail-

able potential energy and the latter called the background po-

tential energy. Similar to Rayleigh–Bénard convection (RBC)

[4], where heating is supplied at the bottom and removed from

the top of a cell [1], and horizontal convection (HC) [2], where

heat is supplied and removed through the bottom of a horizontal

fluid layer [5], VC is a flow that is driven by potential energy

alone.

Flow Setup

We employ the same numerical setup for VC as in [7], i.e. we

consider a buoyancy driven flow confined between two differen-

tially heated walls. The governing continuity, momentum and

temperature equations are respectively given by,

∂iui = 0, (1)

∂tui +u j∂ jui =−
1

ρ0
∂i p+δi1gβ(Θ−Θ0)+ν∂2

j ui, (2)

∂tΘ+u j∂ jΘ = κ∂2
jΘ, (3)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, (i, j = 1,2,3) and repeated indices

imply summation. We define Θ0 the reference temperature, β
the thermal expansion coefficient of the fluid, ν the kinematic

viscosity and κ the thermal diffusivity, all assumed to be inde-

pendent of temperature. We also define the Rayleigh number

Ra ≡ gβ∆ΘH3/(νκ), where ∆Θ the temperature difference of

the walls and the Prandtl number Pr ≡ ν/κ. We further assume

(ρ−ρ0)/ρ0 = −β(Θ−Θ0) the equation of state for gases and

so we rewrite equations (2) and (3) as

∂tui +u j∂ jui =−
1

ρ0
∂i p−δi1g

ρ

ρ0
+ν∂2

j ui, (4)

∂tρ+u j∂ jρ = κ∂2
jρ. (5)

We will make use of equations (4) and (5), expressed in terms of

density, in order to analyse the rate of conversions of potential

energy to kinetic energy using the mechanical energy exchange

framework for VC [10]. The coordinate system x, y and z (or

x1, x2 and x3) refers to the streamwise (opposing gravity), span-

wise and wall-normal directions. We impose no-slip and no-

penetration boundary conditions on ui at the walls, and periodic

boundary conditions on ui, p and ρ in the x- and y-directions. In

addition, we adopt the notation 〈·〉V for volume-averaged quan-

tities, as before, and (·) for time- and volume-averaged quan-

tities. Thus, ui = ui − u′i the mean velocity and ρ = ρ−ρ′ the

mean density. Equations (1), (4) and (5) are solved using DNS

in a domain size Lx×Ly×Lz = 8H×4H×H and the simulation

parameters have been previously reported in [7].

Potential and Kinetic Energies in VC

One of the key ideas that characterises the contributions of po-

tential energy to kinetic energy is the decomposition of poten-

tial energy Ep into the available and background components

(Ea and Eb respectively) [6]. Ea is needed in order to drive nat-

ural convection and is the fraction of potential energy that can

be converted to kinetic energy. Ea is defined as the difference

between Ep the potential energy of a given density distribution

and Eb the potential energy of the background (reference) state

of the density distribution in question [6], at that instant in time.

To determine the background state of an instantaneous density

distribution in VC, we rearrange volumes of constant density

such that lighter volumes are placed on top of heavier volumes.

In a numerical simulation, a grid box of constant density is re-

shaped into a horizontal thin sheet and placed in the domain

such that density reduces with increasing height [8]. The new



x-location of each value of density is denoted by x∗= x∗(ρ, t).
As an example, we plot the time-averaged profiles of x∗, i.e.

〈x∗〉t (where 〈·〉t denotes averaging over time) versus density

in figure 2 for Ra ranging between 105 to 109 and Pr = 0.709.

At the highest Ra, the thermal boundary layers are thinnest and

so the density distribution is more uniform and closer to ρ0, as

reflected by the rapid change of x∗/H at |(ρ−ρ0)/∆ρ|. 0.1.
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Figure 2: Time-averaged profiles of 〈x∗〉t/H of the density

fields (ρ−ρ0)/∆ρ in VC. The density fields are rearranged such

that lighter volumes are placed on top of heavier volumes.

Instantaneously, the background potential energy is then defined

by Eb ≡ g〈(ρ−ρ0)x∗〉V /ρ0, where g the gravitational acceler-

ation and 〈·〉V denotes averaging over the domain. In contrast,

Ep can be easily computed according to Ep ≡ g〈(ρ−ρ0)x〉V /ρ0

where x is the original height of each volume of density in the

domain. It then follows that Ea = Ep −Eb.
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Figure 3: Mechanical energy distribution in VC, where 〈Ep〉t is

the potential energy, 〈Eb〉t is the background potential energy,

〈Ea〉t = 〈Ep〉t −〈Eb〉t is the available potential energy and 〈Ek〉t

is the kinetic energy. The corresponding laminar solutions are

shown as black dashes, black dot-dashes, red dashes and blue

dashes. U∆ρ ≡ (g∆ρH/ρ0)
1/2 is the free-fall velocity.

In figure 3, we plot the trends of 〈Ep〉t , 〈Eb〉t and 〈Ea〉t for

our VC dataset. 〈Ep〉t is equal to zero for our setup because

we have set ρ0 = 0 in our direct numerical simulations (DNS).

The value for ρ0 can be arbitrary since it only results in a ver-

tical shift in the values of 〈Ep〉t and 〈Eb〉t ; the magnitude of

〈Ea〉t is unaffected. From figure 3, the values of 〈Eb〉t is always

lower than 〈Ep〉t – this is expected since 〈Eb〉t represents the

average minimum potential energy. In addition to potential en-

ergy, we compute 〈Ek〉t ≡ 〈u2
i 〉V,t/2 the kinetic energy for VC,

where ui the velocity field, and we find that 〈Ek〉t is smaller than

〈Ea〉t for the present Ra range. For comparison, we include the

laminar potential and kinetic energies which we compute from

u(4ρ0Hν) = ∆ρg(2z−H)(z−H)z the mean streamwise veloc-

ity and 2H(ρ−ρ0) = 2∆ρz−∆ρH the mean density equations.

The laminar results are shown as dashed and dot-dashed curves

in figure 3. Since we do not expect to extrapolate the laminar

results to the turbulent regime, there are discontinuities in the

laminar-to-turbulent trends. The trends at the lowest Ra range

in the laminar curves are consistent with the lower-Ra trends of

the DNS.

Rate of Change of Kinetic and Potential Energies

Global form

We first derive the rate of change of kinetic energy (dEk/dt) and

potential energy (dEp/dt). Following [10], we obtain

dEk

dt
=−Φx +Φτ − ε, (6)

by multiplying equation (4) with ui and then applying volume

averaging. In a similar manner, we obtain

dEp

dt
= Φa1 +Φx +Φb1 +Φi, (7)

by multiplying equation (5) with x (i.e. potential energy varies

linearly with vertical height) and then applying volume averag-

ing. To facilitate discussion, we adopt the notation used by [10]

for the terms in equations (6) and (7), where

Φx = gρ−1
0 〈ρu〉V , (8)

Φτ = νV−1
∮

S

(

ui ∂ jui

)

· n̂ j dS (= 0), (9)

ε = ν〈
(

∂ jui

)2
〉V , (10)

Φa1 =−g(ρ0V )−1
∮

S
(ρxui) · n̂dS

(

=−gρ−1
0 〈ρU〉A(Lx,y,z)

)

,

(11)

Φb1 = κg(ρ0V )−1
∮

S
(x∂iρ) · n̂dS (= 0), (12)

Φi =−κg∆〈ρ〉A(ρ0Lx)
−1 (= 0), (13)

and the notation 〈·〉A(Lx,y,z) denotes averaging in the yz-plane

at x = Lx. Where applicable, we include the simplified terms

on the right-hand side (in parentheses) which we obtain from

applying the boundary conditions of our VC setup. A similar

set of equations to equations (6) and (7) has been previously

developed by [4] for RBC. Equation (6) shows that the rate

of change of Ek depends on Φx the average buoyancy produc-

tion rate in the domain, Φτ the rate of work by shear stresses

at the domain boundaries and ε the average rate of dissipation

of kinetic energy. In equation (7), the first term Φa1 is the

rate of buoyancy production at the upper boundary of the VC

setup. The terms Φb1 and Φi are relevant in setups that con-

tain horizontal boundaries with a prescribed heat flux (in RBC,

for example), the former is related to the heat flux rate at up-

per and lower horizontal boundaries and the latter is related to

the conductive heat flux rate arising from a large scale vertical

density difference if the flow is motionless. If our VC setup

is instead adiabatically capped at the upper and lower bound-

aries, Φa1 equals zero because the buoyancy production are

suppressed at the boundaries, whereas Φb1 remains zero (be-

cause there is no vertical heat flux at the boundaries) and Φi

becomes finite. In our setup, Φτ, Φb1 and Φi are equal to zero

because (i) we impose no-slip and impermeable boundary con-

ditions on ui in the z-direction, and (ii) we impose periodicity

in the x- and y-directions. Thus, equation (6) is simplified to

dEk/dt =−Φx − ε and is the same as the equation for the con-

version rate of Ek of RBC [4], whereas equation (7) is simplified

to dEp/dt = Φa1 +Φx.
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Figure 4: Mechanical energy framework for VC showing the pathways (arrows) for energy conversion rates between Eb the minimum

potential energy, Ea the available potential energy and Ek the kinetic energy. (a) Framework based on global volume-average equations

(6), (14) and (17). (b) Framework based on the mean and turbulent contributions from equations (18)–(20). (c) Ra trends of the

conversion rates in VC for volume-averaged buoyancy flux Φx (red crosses), dissipation ε (blue circles) and area-averaged buoyancy

production Φa1 (green circles). For Φx and ε, the mean contributions are plotted as solid symbols and the fluctuating contributions are

plotted as open symbols. The solid and dashed lines (and the corresponding colours) are the mean and fluctuating contributions for

RBC (cf. [3]).

For the rate of change of background potential energy in VC,

we obtain
dEb

dt
=−Φb2 +Φd , (14)

where

Φb2 =−
κg

ρ0V

∮
S
(x∗∂iρ) · n̂dS =

κg

ρ0

(

Lx

Lz

)

〈∂xρ〉A(x,y,0) , (15)

Φd =−κg(ρ0)
−1

〈

(dx∗/dρ)(∂iρ)
2
〉

V
, (16)

following the steps outlined in § 4 of [10]. We note that a third

term is present in the equation derived by [10] (referred to as

Sadv the rate of change of Eb due to advective mass across the

bounding surface S) but since it is equal to zero in VC, we do

not show this term in equation (14). Φb2 is the buoyancy forcing

rate. In VC, Φb2 is equal to the rate of supply of horizontal

heat flux at the vertical walls, which maintains the density field

away from its minimum potential energy state. Φd is the rate of

irreversible mixing. Since there is no net heating of the volume

in VC, dEb/dt = 0 and so Φb2 = Φd , which is similar to RBC.

The rate of change of Ea can then be obtained by subtracting

equation (7) and equation (14):

dEa

dt
=

dEp

dt
−

dEb

dt
= Φa1 +Φx − (−Φb2 +Φd). (17)

Thus, the mechanical energy exchange framework for VC can

be formed by relating terms on the right-hand side of equa-

tions (6), (14) and (17). Figure 4(a) illustrates the framework

and figure 4(c) shows the exchange rates for Φx, ε and Φa1,

all normalised by Φb2. Since dEp/dt = 0 (no net heating) and

dEk/dt = 0, therefore from equations (6) and (7), we find that

Φa1 = −Φx and −Φx = ε, which agree with the trends in fig-

ure 4(c). In addition, since dEb/dt = 0, then −Φb2 = Φd which

implies that the rate at which Ea is generated in equation (14)

(and also the rate of irreversible mixing) is directly proportional

to the rate of energy exchange via buoyancy flux and rate of

dissipation in VC.

Mean and turbulent form

It is more informative to analyse the mean and turbulent-

fluctuation contributions of the terms in figure 4(a). This is

achieved by decomposing the kinetic and potential energies into

the mean and turbulent contributions. Following [3], we obtain

dEk

dt
=−ΦT −Φx − ε, (18)

dE ′
k

dt
= ΦT −Φ′

x − ε′, (19)

dEa

dt
= Φa1 +Φ′

a1 +Φx +Φ′
x − (−Φb2 +Φd), (20)

where

ΦT =−ρ0〈∂ jui u′iu
′
j〉V , (21)

the shear production term which quantifies the rate at which

energy is converted from the mean flow to turbulence,

Φx = g〈ρu〉V , Φ′
x = g〈ρ′u′〉V , (22)

the energy conversions by the mean and turbulent buoyancy

flux,

ε = ν〈(∂ jui)
2〉V , ε′ = ν〈(∂ ju

′
i)

2〉V , (23)

the mean and turbulent rate of dissipations,

Φa1 =−g〈ρu〉A(Lx,y,z), Φ′
a1 =−g〈ρ′u′〉A(Lx,y,z). (24)



the area-averaged mean and turbulent buoyancy flux at the top

of the domain. Using equations (18)–(20), the framework in

figure 4(a) is extended to include the mean and turbulent con-

tributions as well as ΦT , and this is shown in figure 4(b).

In figure 4(d), we plot the relative contributions of the energy

conversion rates from the mean and turbulent terms in equa-

tions (21)–(23) for VC (circular symbols) and compared the

contributions with the relative contributions for RBC (solid and

dashed lines of the same color). Similar to figure 4(c), all quan-

tities are normalised by Φb2. For VC, we find that the conver-

sions from the mean contributions of the vertical buoyancy flux

−Φx increase from approximately 50% to a maximum of 80%.

The increasing trend of −Φx is matched by an increase in the

conversions for turbulence production ΦT (from approximately

25% to 60%) and a decrease in dissipation rates from mean ve-

locities ε (from approximately 20% to 10%). As ΦT increases

with increasing Ra, the corresponding turbulent kinetic energy

ε′ is increasingly dissipated and at Ra = 109 is approximately

90% of Φb2. When compared to the relative contributions from

RBC [3], the trends of −Φx and −Φ′
x appear comparable at

107 . Ra . 108. However, at matched Ra values, the contri-

butions from both ΦT and ε′ are higher for VC than for RBC,

which suggests that small-scale turbulence is generated at much

lower Ra in VC compared to RBC. The higher contributions

from both ΦT and ε′ in VC are commensurate with lower con-

tributions from ε.
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Figure 5: Mixing efficiency for VC using equation (25), where

the dashed line is the laminar result and the symbols are the

DNS results.

We quantify the mixing efficiency in VC following the defini-

tion used in [8] and [4]:

η =
Φd −Φi

Φd −Φi + ε
, (25)

which measures the proportion of kinetic energy that is irre-

versibly converted to the background potential energy due to

mixing [9]. Unlike in RBC where η = 0.5(1+Nu−1) [4], the

mixing efficiency for VC cannot be written explicitly in terms of

Nu because ε, which contains the vertical buoyancy flux term,

is unclosed for VC [7]. In addition, Φi = 0 for VC because

of the periodic boundary condition imposed in the streamwise

x-direction. For VC, we find that on average η ≈ 0.53 (see fig-

ure 5) which is close to η = 0.5 expected for RBC [3]. This

similarity of the values of η could be attributed to the fact that

in both VC and RBC, Φd ∼ ε and in the case of RBC, Φi is

negligible [3]. For comparison, we plot the laminar mixing ef-

ficiency value in figure 5. From the trend of the laminar mix-

ing efficiency, we find a negligible contribution from the dissi-

pation rate at low Ra (η ≈ 1) which increasingly dominates at

102 . Ra . 104 (η → 0). However, we note that the latter re-

sult is presumably amenable to transitional flow dynamics, as

indicated by the discontinuity in the laminar-to-turbulent 〈Ek〉t

trend in figure 3.

Conclusions

We investigate the conversion rates between potential energy

and kinetic energy using the mechanical energy framework for

VC for Ra ranging between 105 to 109 and Pr = 0.709. Us-

ing the framework, we compared the conversion rates in VC

with that for RBC. The conversion rates for vertical buoyancy

flux are similar in both VC and RBC at matched Ra. However,

the turbulent production rate as well as the turbulent dissipation

rate is higher in VC than for RBC (figure 4d), which suggests

that small-scale turbulence is generated at a lower Ra in VC

compared to RBC. The increased production of small-scale tur-

bulence is commensurate with decreased dissipation rate of the

mean motions. Since the heating and cooling in VC is uniquely

restricted to the vertical walls, the rate of generation of available

potential energy is directly proportional to the dissipation rate

of kinetic energy (figure 4c). This relation is consistent with the

value of mixing efficiency for VC, defined as the proportion of

kinetic energy consumed by irreversible mixing, which is ap-

proximately 0.53 (figure 5). This value is also close to the value

of mixing efficiency of 0.5 predicted for RBC.
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